Archive for the ‘ALGORITHM’ Category

Monday, November 17th, 2008

Augmented reality is a very cool technology.  It is the star wars holograms that we always want, it is playing a game that maps out the physical world mixed with virtual assets, it is straight up cool.

The FLARToolKit is doing some of this cool in Flash.  This little toolkit is pretty sweet mapping points and sets of points to patterns, colors or other visual queues that technology can latch onto.  Combine this with a webcam and you have some pretty cool AR.

(more…)

Saturday, June 21st, 2008

[youtube]http://www.youtube.com/watch?v=YEM-XAeY4K0[/youtube]

3D models from basic video… This can be huge in all sorts of ways.  For exponential growth you need to go virtual.

  • This is a technology called VideoTrace from Australia
  • The Siggraph paper describing VideoTrace is available here (pdf 6MB)
  • Larger videos available here, with a more compressed version here.
Thursday, April 24th, 2008

This is older, from january, somehow I missed it but… nitoyon has created an AS3 port of jQuery. jQuery is my favorite javascript tool besides javascript itself. Mootools, prototype, and others like mochikit are all great but jQuery was the first to do lambda chain decorating and others followed suit.

But having this power in as3 is a great thing! $ selectors, common access methods to properties, methods, etc. All good stuff. Again this shows the fun in as3 or ES4 based languages like Actionscript because people are porting all sorts of libraries to it. If this performs I may just start using it daily TODAY!

For instance setting the stage align for use in full screen:

$(stage).attr({scaleMode: "noScale", align: "TL"});

That is too fun… The only thing not cool about this is all the spam at nitoyon‘s blog : )

How about a functional Tweener call:

function animate(f:Boolean):void {
				// Select 'RoundRect' elements using CSS selector
				$("RoundRect:" + (f ? "odd" : "even"))
					.addTween({
						rotation: 90,
						scaleX: 0.5,
						scaleY: 0.5,
						time: 0.6,
						delay: 0.3,
						transition: "easeOutCubic"
					})
					.addTween({
						scaleX: 1,
						scaleY: 1,
						time: 0.5,
						delay: 0.9,
						transition: "easeOutElastic",
						onComplete: function():void {
							// restore the rotation and call again.
							this.rotation = 0;
							animate(!f);
						}
					});
			}
			animate(false);

Stuff to see and try

Friday, April 11th, 2008

Jono is giving SWFZ to science and the open source devices.

The SWFZ engine is one Flash 3D engine that took a different approach. It is a bit early in its technique used but the author at custom:media Jono has decided to float the source code out there in ghost mode (no active development but not dead). It is just ready to branch and others to run with it. He is floating the source but I think in 1-2 years this will be the preferred method if processors and multicore parallel usage is optimized. We shall see.

The implementation method and difference with SWFZ engine in Flash for 3d is that is is a pixel based renderer or scanline. It is based on a really fun game engine called Irrlicht which has been pretty active for the last few years but is a C++ DirectX and OpenGL engine. Since SWFZ has to run in Flash and it is a pixel renderer/scanline it has some limitations currently in Flash. Games and renders have to be fast to pull this off and Flash is limited by the software renderer but as computers get multiple processors and flash player gets better at this then this will be a viable option (it is the same thing that limits Canvas based renderers right now). One main problem with this is you can’t go too full screen the biggest sizes that perform well are smaller windows 320×240 etc. But if the processors can handle it it is actually more efficient when it removes overlap, extra triangle drawing and painters algorithm like problems dont’ pop up (triangle overlap when on same plane). This method draws pixel by pixel but fast enough flash engines like Papervision, Sandy3D and Away3D draw overlaps due to the drawing technique, back to front.

But SWFZ still manages to pull off some amazing feats such as these demos

Quake Demo

Terrain Demo

Yoshis Hip Hop Couzin

Jono has put some great classes into SWFZ engine such as bsp parsers, quake md2 parsers, animated mesh, and lots of great examples in porting C++ Irrlicht to AS3. This was a very early example of how AS3 was fun for programmers to port stuff from C or C++ into Flash. AS3 is just fun. Also be sure to check the site for more samples like an FPS game, some basic ai etc.

Jono has been working on 3d in Flash for a while and actually this message is what shows the difference betweeen this approach and other flash engines the way Papervision, Sandy and Away3D (pv3d derivative) make 3d in flash fast enough (Painter’s Algorithm and drawing skewed movieclips and textures.

Demos

More about the Engine Some Notes

The SWFZ engine.

Overview:

SWFZ engine is the result of four years of me messing with 3D in Flash.

I was a complete newbie to 3D, so a lot of learning has happened to get to here.

If you’re interested in 3D engines check out the resource links at the bottom of the page:

The Demo:

Model

  • .md2 format from ID’s Quake2.
  • Uses frame based animation
  • Textured with jpeg
  • No lighting, No Gouraud Shading, just plain texture

Skybox

  • Textures are just jpegs.

Boxes

  • Rendering – Textured Gouraud , Textured Gouraud with Alpha, Textured Gouraud with Quick Alpha, Gouraud Shaded, and the large box is just Textured.
  • Star Texture – Targa (.tga) file format.

AS3 classes

  • 171 classes and interfaces

Scene

  • No lighting
  • No collision detection

SWFZ engine technology:

The demo only shows a small part of the capabilities of the engine. In the coming weeks I will get www.custommedia.co.nz up and running and start to post more info then.

Currently implement stuff:

New file formats supported

  • .tga – Targa Image
  • .bmp – Bitmap Image
  • .3ds – 3D Studio Max
  • .bsp – Quake3 levels
  • .md2 – Quake2 models
  • .obj – Wavefront 3d object (static)
  • .zip – Read from a zip archive (all in Flash, no server side scripts)

3D Rendering

  • mipmaps
  • perspective correct texturing + affine texturing
  • Flat shading
  • Gouraud
  • Textured Gouraud
  • Textured Flat
  • Textured Two Layers
  • Gouraud Alpha
  • Textured Flat Alpha
  • Textured Gouraud Alpha

3D Scene

  • Billboards
  • Parent, Child scene nodes
  • OctTree
  • Skybox
  • Static Meshes
  • Animated Meshes
  • Basic collision detection
  • Scene node animators

If any code is useful to you maybe drop him a donation or what would be nice if this was all setup at google code and used to be integrated into other engines. Irrlicht ports are fun and there is a future in this method when processors catch up I think.

Sunday, April 6th, 2008

Nicolas Cannasse, a virtual machine genius (maker of MTASC compiler, Neko and haXe (haXe compiles to target flash 6-9 but really only flash 9 is used anymore unless you are making banners)) released the Physaxe 2D Physics kit for haXe today.

It is heavily based on Glaze (demos) and Box2D which the Motor2, Glaze and Box2DFlashAS3 physics kits are all based on. Box2D is a great C++ 2D physics engine, it is simple which lended itself to being ported to AS3 quite easily. It is also a testament to AS3 that C++ kits are being ported into the language, not once, but many times. Also C ports like Chipmunk and other signs point to == AS3 is of fun.

Physaxe is quite amazing you must see the demos (very similar to Glade demos), it will get the inspirational wheels turning in your idea machines.

2D Physics in Flash and AS3 are extremely hot and can be used for many, many things from game development to promotions to simulations to user interface or visualizations and even modeling natural systems. It is nice to have a port of Box2D and similar to glade capabilities with Chipmunk like Glade has.

A game and physics engine for Flash including:

  • Rigid Body Dynamics
  • Scene management
  • Line of sight
  • User Input
  • Scrolling
  • AI

Core parts of the physics solver and collision system are based on the C physics engine Chipmunk

Notes about Physaxe:

Physaxe is a 2D Rigid Body Library written in haXe. It’s been highly optimized for the Flash 9 Player, with the best optimizations available.

Physaxe is based on several existing physics engines, mainly :

  • Box2D, the reference open source physics engine
  • Glaze, an AS3 engine which is a port of Chipmunk, itself based on Box2D

Physaxe features are :

  • rigid body consisting in several shapes
  • shapes supported are circles, segments (with rounded edges) and arbitrary convex polygons
  • customizable broadphase (currently bruteforce and y-sorted list are available)
  • island resolution and sleeping (allow ~0 CPU to be spent when groups are sleeping)
  • constraint solver based on Box2D sequential impulses
  • customizable body properties, such as linear/angular friction and maximized motion

Updated list of physics engines are like this:

AS3 3D Physics Engines (Open Source)

AS3 2D Physics Engines (Open Source)

haXe 2D Physics Engines

Get your game on! It is best to get them out early and often. I need to take my own advice.

Monday, March 31st, 2008

The FFilmation AS3 Flash Isometric Engine has been released into the wild.  Jordi Ministral has been generous to watch his creation grow and evolve with the help of the open source community and the flash community is one of the best open source communities out there even though the core (adobe flash) is still closed. Open sourcing is one of the best ways to market test your skills really and this engine has much anyone can learn in making isometric engines for flash. You can see our first post on this great engine here.

Here’s a peek at the classes in the API:

http://www.ffilmation.org/docs/api/1.0/class-summary.html

All Classes

BumpMap
fAiContainer
fCamera
fCharacter
fCollideEvent
fElement
fEngine
fEngineMaterial
fEngineSceneRetriever
fEventIn
fEventOut
fFloor
fGlobalLight
fLight
fMaterial
fMoveEvent
fObject
fOmniLight
fPlane
fProcessEvent
fRenderableElement
fScene
fSceneLoader
fWalkoverEvent
fWall
line
mathUtils
movieClipUtils
polygonProjection
polygonUtils
Vector
vport

Get your game on!

Saturday, March 22nd, 2008

Den Ivanov scored another “why didn’t I think of that” flash demos with extruding pixels into 3d with papervision.  He has some great samples and demos on his site about it.  Den Ivanov is a long time flasher and recent scores with Brahma bus (one of the coolest first papervision commercial projects) and the terrain generator.

This uses ExtrudeImage which does exactly what the class says.

Saturday, March 22nd, 2008

Forrest Briggs throwing down with a real-time raytracer in AS3. Also a C++ OpenGL version sample on the page.

Real-time pixel manipulation in flash is getting faster, but is still probably going to have to be faked in AS3, maybe AS4 will provide us per pixel speeds that Andre Michelle has been harping on since flash 8.5. Native operations can be much faster in that area. AIF might look to change some of that but that is Flash 10.

Here is the code for the as3 raytracer. Read more at laserpirate.

package
{
import flash.display.Sprite;
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.events.Event;
import flash.utils.getTimer;
import flash.events.MouseEvent;
import flash.text.TextField;
import flash.text.TextFormat;

public class RayTracer extends Sprite
{
 private var t:Number;
 private var dt:Number = .01;
 private var frameTimeTxt:TextField;

 public static const BUFFER_WIDTH:int = 160;
 public static const BUFFER_HEIGHT:int = 120;
 public static const BUFFER_SCALEDDOWN:int = 320 / BUFFER_WIDTH;

 public static const HALF_BUFFER_WIDTH:int = BUFFER_WIDTH / 2;
 public static const HALF_BUFFER_HEIGHT:int = BUFFER_HEIGHT / 2;

 private var outputBitmapData:BitmapData;
 private var outputBitmap:Bitmap;

 public var FOV:Number = 20;

 public var sphereCenterX:Array 	= [0,	0,		0, 		0];
 public var sphereCenterY:Array 	= [0, -.2,	.4, 		100.5];
 public var sphereCenterZ:Array 	= [4, 	4,		4, 		10];
 public var sphereRadius:Array 	= [.35, .35,	.25, 	100];
 public var sphereR:Array 		= [255,	0,		0,		20];
 public var sphereG:Array 		= [0, 	150,	0,		20];
 public var sphereB:Array 		= [0, 	0,		255,	20];
 public var sphereReflects:Array = [false, false, false, true];
 public var sphereReflectiveness:Array = [0,0,0,.3];
 public var sphere2dX:Array = new Array(sphereCenterX.length);
 public var sphere2dY:Array = new Array(sphereCenterX.length);
 public var sphere2dR:Array = new Array(sphereCenterX.length);

	public var numSpheres = sphereCenterX.length;

	var skyR:int =  20;
 var skyG:int =  20;
 var skyB:int =  20;
 var skyColor:int = (skyR< <16) + (skyG<<8) + skyB;
 var ambientIllumination:Number = .1;

	var canvas:BlankClip;

	var theta:Number = 0;
 var mouseIsDown:Boolean = false;
 var mouseDownTheta:Number = 0;
 var mouseDownX:Number = 0;

	public function RayTracer()
 {
 	outputBitmapData = new BitmapData(BUFFER_WIDTH, BUFFER_HEIGHT, false);
 	outputBitmap = new Bitmap(outputBitmapData);
 	addChild(outputBitmap);
 	//outputBitmap.smoothing = true;

		outputBitmap.width= 320;
 	outputBitmap.height = 240;

		canvas = new BlankClip;
 	addChild(canvas);
 	canvas.buttonMode = true;
 	canvas.useHandCursor = true;

		frameTimeTxt = new TextField();
 	frameTimeTxt.defaultTextFormat = new TextFormat("Arial");
 	frameTimeTxt.x = 8;
 	frameTimeTxt.y = 8;
 	frameTimeTxt.width = 640;
 	frameTimeTxt.textColor = 0xFFFFFF;
 	frameTimeTxt.selectable = false;
 	addChild(frameTimeTxt);

		t = 0;
 	addEventListener(Event.ENTER_FRAME, update, false, 0, true);

		canvas.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownHandler);
 	canvas.addEventListener(MouseEvent.MOUSE_UP, mouseUpHandler);
 }

	public function mouseDownHandler(e:*):void
 {
 	mouseIsDown = true;
 	mouseDownX = stage.mouseX;
 	mouseDownTheta = theta;
 }

	public function mouseUpHandler(e:*):void
 {
 	mouseIsDown = false;
 }

	public function update(e:*)
 {
 	// start frame timer and update global time
 	var timer:Number = getTimer();
 	t += dt;

		// handle mouse rotation
 	if( mouseIsDown ) theta = mouseDownTheta - .0015 * (stage.mouseX - mouseDownX);
 	theta += dt;

		// do some funky animation
 	sphereCenterX[0] = .5*Math.sin(theta*5);
 	sphereCenterZ[0] =1 + .5*Math.cos(theta*5);

		sphereCenterX[1] = .5*Math.sin(theta*5 + 2 * Math.PI / 3);
 	sphereCenterZ[1] = 1 + .5*Math.cos(theta*5 + 2 * Math.PI / 3);

		sphereCenterX[2] = .5*Math.sin(theta*5 + 4 * Math.PI / 3);
 	sphereCenterZ[2] = 1 + .5*Math.cos(theta*5 + 4 * Math.PI / 3);

		// reused variables
 	var x:int;
 	var y:int;
 	var i:int;
 	var j:int;

		var r:int;
 	var g:int;
 	var b:int;

		var dx:Number;
 	var dy:Number;

		var rayDirX:Number;
 	var rayDirY:Number;
 	var rayDirZ:Number;
 	var rayDirMag:Number;

		var reflectRayDirX:Number;
 	var reflectRayDirY:Number;
 	var reflectRayDirZ:Number;

		var intersectionX:Number;
 	var intersectionY:Number;
 	var intersectionZ:Number;

		var reflectIntersectionX:Number;
 	var reflectIntersectionY:Number;
 	var reflectIntersectionZ:Number;

		var rayToSphereCenterX:Number;
 	var rayToSphereCenterY:Number;
 	var rayToSphereCenterZ:Number;

		var lengthRTSC2:Number;
 	var closestApproach:Number;
 	var halfCord2:Number;
 	var dist:Number;

		var normalX:Number;
 	var normalY:Number;
 	var normalZ:Number;
 	var normalMag:Number;

		var illumination:Number;
 	var reflectIllumination:Number;

		var reflectR:Number;
 	var reflectG:Number;
 	var reflectB:Number;

		// setup light dir
 	var lightDirX:Number = .3;
 	var lightDirY:Number = -1;
 	var lightDirZ:Number = -.5;
 	var lightDirMag:Number = 1/Math.sqrt(lightDirX*lightDirX +lightDirY*lightDirY +lightDirZ*lightDirZ);
 	lightDirX *= lightDirMag;
 	lightDirY *= lightDirMag;
 	lightDirZ *= lightDirMag;

		// vars used to in intersection tests
 	var closestIntersectionDist:Number;
 	var closestSphereIndex:int;
 	var reflectClosestSphereIndex:int;

		// compute screen space bounding circles
 	//canvas.graphics.clear();
 	//canvas.graphics.lineStyle(1, 0xFF0000, .25);
 	for(i = 0; i < numSpheres; ++i)
 	{
 		sphere2dX[i] = (BUFFER_WIDTH / 2 + FOV * sphereCenterX[i] / sphereCenterZ[i]);
 		sphere2dY[i] = (BUFFER_HEIGHT /2 + FOV * sphereCenterY[i] / sphereCenterZ[i]);
 		sphere2dR[i] = (3 * FOV * sphereRadius[i] / sphereCenterZ[i]);
 		//canvas.graphics.drawCircle(sphere2dX[i]*BUFFER_SCALEDDOWN, sphere2dY[i]*BUFFER_SCALEDDOWN, sphere2dR[i]*BUFFER_SCALEDDOWN);
 		sphere2dR[i] *= sphere2dR[i]; // store the squared value
 	}

		// write to each pixel
 	outputBitmapData.lock();
 	for(y = 0; y < BUFFER_HEIGHT; ++y)
 	{
 		for(x = 0; x < BUFFER_WIDTH; ++x)
 		{
 			// compute ray direction
 			rayDirX = x - HALF_BUFFER_WIDTH;
 			rayDirY = y - HALF_BUFFER_HEIGHT;
 			rayDirZ = FOV;

				rayDirMag = 1/Math.sqrt(rayDirX * rayDirX + rayDirY * rayDirY +rayDirZ * rayDirZ);
 			rayDirX *= rayDirMag;
 			rayDirY *= rayDirMag;
 			rayDirZ *= rayDirMag;

				/// trace the primary ray ///
 			closestIntersectionDist = Number.POSITIVE_INFINITY;
 			closestSphereIndex = -1
 			for(i = 0; i < numSpheres; ++i)
 			{
 				// check against screen space bounding circle
 				dx = x - sphere2dX[i];
 				dy = y - sphere2dY[i];
 				if( dx * dx + dy * dy > sphere2dR[i] ) continue;

					// begin actual ray tracing if its inside the bounding circle

					lengthRTSC2 = 		sphereCenterX[i] * sphereCenterX[i] +
 									sphereCenterY[i] * sphereCenterY[i] +
 									sphereCenterZ[i] * sphereCenterZ[i];

					closestApproach =	sphereCenterX[i] * rayDirX +
 									sphereCenterY[i] * rayDirY +
 									sphereCenterZ[i] * rayDirZ;

					if( closestApproach < 0 ) // intersection behind the origin
 					continue;

					halfCord2 = sphereRadius[i] * sphereRadius[i] - lengthRTSC2 + (closestApproach * closestApproach);
 				if( halfCord2 < 0 ) // ray misses the sphere
 					continue;

					// ray hits the sphere
 				dist = closestApproach - Math.sqrt(halfCord2);
 				if( dist < closestIntersectionDist )
 				{
 					closestIntersectionDist = dist;
 					closestSphereIndex=i;
 				}
 			}
 			/// end of trace primary ray ///

				// primary ray doesn't hit anything
 			if( closestSphereIndex == - 1)
 			{
 				outputBitmapData.setPixel(x, y, skyColor);
 			}
 			else // primary ray hits a sphere.. calculate shading, shadow and reflection
 			{
 				// location of ray-sphere intersection
 				intersectionX = rayDirX * closestIntersectionDist;
 				intersectionY = rayDirY * closestIntersectionDist;
 				intersectionZ = rayDirZ * closestIntersectionDist;

					// sphere normal at intersection point
 				normalX = intersectionX - sphereCenterX[closestSphereIndex];
 				normalY = intersectionY - sphereCenterY[closestSphereIndex];
 				normalZ = intersectionZ - sphereCenterZ[closestSphereIndex];
 				normalX /= sphereRadius[closestSphereIndex]; // could be multiply by precacluated 1/rad
 				normalY /= sphereRadius[closestSphereIndex];
 				normalZ /= sphereRadius[closestSphereIndex];

					// diffuse illumination coef
 				illumination = 	normalX * lightDirX +
 								normalY * lightDirY +
 								normalZ * lightDirZ;

					if( illumination < ambientIllumination )
 					illumination = ambientIllumination;

					/// trace a shadow ray ///
 				var isInShadow:Boolean = false;
 				for(j = 0; j < numSpheres; ++j)
 				{
 					if( j == closestSphereIndex ) continue;

						rayToSphereCenterX = sphereCenterX[j] - intersectionX;
 					rayToSphereCenterY = sphereCenterY[j] - intersectionY;
 					rayToSphereCenterZ = sphereCenterZ[j] - intersectionZ;

						lengthRTSC2 = 		rayToSphereCenterX * rayToSphereCenterX +
 										rayToSphereCenterY * rayToSphereCenterY +
 										rayToSphereCenterZ * rayToSphereCenterZ;

						closestApproach =	rayToSphereCenterX * lightDirX +
 										rayToSphereCenterY * lightDirY +
 										rayToSphereCenterZ * lightDirZ;
 					if( closestApproach < 0 ) // intersection behind the origin
 						continue;

						halfCord2 = sphereRadius[j] * sphereRadius[j] - lengthRTSC2 + (closestApproach * closestApproach);
 					if( halfCord2 < 0 ) // ray misses the sphere
 						continue;

						isInShadow = true;
 					break;

					}

					/// end of shadow ray ///

					if( isInShadow ) illumination *= .5;

					/// trace reflected ray ///
 				if( sphereReflects[closestSphereIndex] )
 				{
 					// calculate reflected ray direction
 					var reflectCoef:Number = 2 * (rayDirX * normalX + rayDirY * normalY + rayDirZ * normalZ);
 					reflectRayDirX = rayDirX - normalX * reflectCoef;
 					reflectRayDirY = rayDirY - normalY * reflectCoef;
 					reflectRayDirZ = rayDirZ - normalZ * reflectCoef;

						closestIntersectionDist = Number.POSITIVE_INFINITY;
 					reflectClosestSphereIndex = -1
 					for(j = 0; j < numSpheres; ++j)
 					{
 						if( j == closestSphereIndex ) continue;

							rayToSphereCenterX = sphereCenterX[j] - intersectionX;
 						rayToSphereCenterY = sphereCenterY[j] - intersectionY;
 						rayToSphereCenterZ = sphereCenterZ[j] - intersectionZ;

							lengthRTSC2 = 		rayToSphereCenterX * rayToSphereCenterX +
 											rayToSphereCenterY * rayToSphereCenterY +
 											rayToSphereCenterZ * rayToSphereCenterZ;

							closestApproach = 	rayToSphereCenterX * reflectRayDirX +
 											rayToSphereCenterY * reflectRayDirY +
 											rayToSphereCenterZ * reflectRayDirZ;

							if( closestApproach < 0 ) // intersection behind the origin
 							continue;

							halfCord2 = sphereRadius[j] * sphereRadius[j] - lengthRTSC2 + (closestApproach * closestApproach);
 						if( halfCord2 < 0 ) // ray misses the sphere
 							continue;

							// ray hits the sphere
 						dist = closestApproach - Math.sqrt(halfCord2);
 						if( dist < closestIntersectionDist )
 						{
 							closestIntersectionDist = dist;
 							reflectClosestSphereIndex=j;
 						}
 					} // end loop through spheres for reflect ray

						if( reflectClosestSphereIndex == - 1) // reflected ray misses
 					{
 						r = sphereR[closestSphereIndex] * illumination;
 						g = sphereG[closestSphereIndex] * illumination;
 						b = sphereB[closestSphereIndex] * illumination;

						}
 					else
 					{
 						//trace("ref hit");
 						// location of ray-sphere intersection
 						reflectIntersectionX = reflectRayDirX * closestIntersectionDist + intersectionX;
 						reflectIntersectionY = reflectRayDirY * closestIntersectionDist + intersectionY;
 						reflectIntersectionZ = reflectRayDirZ * closestIntersectionDist + intersectionZ;

							// sphere normal at intersection point
 						normalX = reflectIntersectionX - sphereCenterX[reflectClosestSphereIndex];
 						normalY = reflectIntersectionY - sphereCenterY[reflectClosestSphereIndex];
 						normalZ = reflectIntersectionZ - sphereCenterZ[reflectClosestSphereIndex];

							normalX /= sphereRadius[reflectClosestSphereIndex]; // could be multiply by precacluated 1/rad
 						normalY /= sphereRadius[reflectClosestSphereIndex];
 						normalZ /= sphereRadius[reflectClosestSphereIndex];

							// diffuse illumination coef
 						reflectIllumination = 	normalX * lightDirX +
 												normalY * lightDirY +
 												normalZ * lightDirZ;

							if( reflectIllumination < ambientIllumination )
 							reflectIllumination = ambientIllumination;

							r = sphereR[closestSphereIndex] * illumination + .5 * sphereR[reflectClosestSphereIndex] * reflectIllumination;
 						g = sphereG[closestSphereIndex] * illumination + .5 * sphereG[reflectClosestSphereIndex] * reflectIllumination;
 						b = sphereB[closestSphereIndex] * illumination + .5 * sphereB[reflectClosestSphereIndex] * reflectIllumination;
 						if( r > 255 ) r = 255;
 						if( g > 255 ) g = 255;
 						if( b > 255 ) b = 255;

						}  // end if reflected ray hits

					} /// end if reflects
 				else // primary ray doesn't reflect
 				{
 					r = sphereR[closestSphereIndex] * illumination;
 					g = sphereG[closestSphereIndex] * illumination;
 					b = sphereB[closestSphereIndex] * illumination;
 				}

					outputBitmapData.setPixel(x, y, (r<<16) + (g<<8) + b);

				} // end if primary ray hit
 		} // end x loop
 	} // end y loop
 	outputBitmapData.unlock();

		// compute FPS
 	var fps:Number = 1.0/((getTimer() - timer) / 1000.0);
 	frameTimeTxt.text = "Drag to rotate. FPS: " + int(fps);
 }

}
}
Monday, February 18th, 2008

AS3 libraries for crypto are pretty robust from the new RAW POWER in the AVM2 virtual machine that runs flash9/as3, cryptography, like compression, is very processor intensive and needs a fair amount of power to be worth the time (usually a balancing mechanism). I am working on a few security apps in AIR and Flash9 for a project and a product so this is the best of what I have found to share. I will be sure to post here when these projects are complete.

There are two that are pretty good as3 kits that have decent support for crypto and hashing, actually as3crypto is quite broad in their support or most common crypto algorithms, even hashing support up to SHA-256 and ciphers 3DES, AES, RC4.

This is not really a comparison just some kits that have tools you might need. as3crypto is definitely the way to go for more heavy ecryption with common ciphers, but if you are just hashing some text as3corelib might work for your project. as3corelib is a more broad toolkit that is made or sponsored by Adobe that has JSON, RSS, support and other tools. It is a great core lib, but not as deep in the encryption area. I am actually using both in the stuff I am working on, as3corelib for some other uses (JSON,RSS) and as3crypto for all encryption and hashing.

The two are:

  • as3crypto
    • Robust, broad encryption and security support
    • Open source
    • Demo
    • Browse source
    • Broad support of algorithms
        • TLS 1.0 support, exposed through TLSSocket and TLSEngine classes
        • X.509 Certificate support, including parsing, and validation
        • built-in list of common root Certificate Authorities
        • symmetric ciphers: AES, Blowfish, DES, 3DES, XTEA, RC4
        • confidentiality modes: CTR, CBC, CFB, CFB-8, OFB, ECB
        • public key crypto: RSA (encryption, decryption, signing, verifying and key generation)
        • padding: PKCS#1 (type 1 and 2), PKCS#5
        • BigInteger library
        • hashing function: SHA-256, SHA-224, SHA-1, MD5, MD2
        • HMAC support
        • prng: TLSPRF and stream-cypher-based PRNG.
        • minimal ASN-1/DER support for PEM key parsing and X-509 cert parsing
        • Crypto – Shortcut class to access many classes above.
        • Hex, Base64 – Static methods to convert binary data to and from text formats

As3 Crypto is a cryptography library written in Actionscript 3 that provides several common algorithms, as well as TLS 1.0 support. The library is offered under the BSD license, and include several derivative works from Java, C and javascript sources.

Here’s some numbers from as3Crypto home page that show the speed, note it has not been optimized just yet (since most of this is client side and only one user would be using it this is not an issue – server side is where this can have scale problems from parallel execution but flash is rarely server side if it is too slow, but it is quite fast)

The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
md2                  1.01k        3.64k       15.08k       53.89k      171.76k
md5                221.85k      447.32k      739.54k      893.72k      905.82k
sha1                82.28k      184.78k      286.76k      336.03k      345.41k
sha224              60.84k      125.67k      200.27k      234.28k      247.58k
sha256              60.52k      126.30k      199.19k      234.04k      246.01k
hmac-md5            48.37k      159.37k      282.87k      295.15k      341.21k
hmac-sha1           18.29k       64.82k      165.72k      277.60k      342.52k
hmac-sha224          5.75k       24.84k      125.71k      204.35k      256.36k
hmac-sha256         15.10k       49.33k      123.71k      206.17k      249.08k
rc4                117.24k      381.34k      878.93k     1315.01k     1539.44k
xtea-cbc             2.49k        6.48k       12.80k       33.00k       44.48k
aes128-cbc           1.61k        4.01k       22.97k       78.55k      205.01k
aes192-cbc           1.34k        5.13k       20.91k       69.45k      172.43k
aes256-cbc           1.48k        5.63k       18.87k       63.45k      150.39k
blowfish-cbc         2.77k       10.81k       42.28k      140.27k      343.05k
des-cbc              2.53k        9.73k       35.20k      124.84k      624.88k
3des-cbc             2.50k        9.72k       35.61k      115.21k      253.42k

The library has not been optimized for speed, and those numbers could probably be improved.

They both have minimal or none ASN.1 support which I will need but I can port much of this from my favorite Java/C# crypto kit from the legion of the bouncy castle of which I was happy to find was a substantial base for this kit.

Whatever you do don’t send any type of message from your crypto kits with aes 256 cipher and sha-256 hashing to Iran from the US. :)

Sunday, January 20th, 2008

Here is a well done game based on the popular Line Rider phenomenon, only this one is Line Golf and it is using the APE AS3 2D Flash Physics Engine. I am sure game sites are just as excited as game developers like myself about the prospects of games that are more dynamic and fun and even 3d with the flash kits of today all thanks to the power of AS3.

Play Line Golf at Candy Stand

This was posted on the APE Google Group where onedayitwillmakeit explains more on how he modified APE for use in the game.